Robust Fingerprinting for Relocatable Code

Irfan Ahmed, Vassil Roussev, Aisha Ali Gombe
Department of Computer Science
University of New Orleans
2000 Lakeshore Dr.
New Orleans LA USA - 70148

irfan.ahmed@uno.edu, vassil@cs.uno.edu, aaligomb@my.uno.edu

ABSTRACT

Robust fingerprinting of executable code contained in a mem-
ory image is a prerequisite for a large number of security
and forensic applications, especially in a cloud environment.
Prior state of the art has focused specifically on identifying
kernel versions by means of complex differential analysis of
several aspects of the kernel code implementation.

In this work, we present a novel technique that can iden-
tify any relocatable code, including the kernel, based on in-
herent patterns present in relocation tables. We show that
such patterns are very distinct and can be used to accurately
and efficiently identify known executables in a memory snap-
shot, including remnants of prior executions. We develop a
research prototype, codeid, and evaluate its efficacy on more
than 50,000 sample executables containing kernels, kernel
modules, applications, dynamic link libraries, and malware.
The empirical results show that our method achieves almost
100% accuracy with zero false negatives.

Categories and Subject Descriptors

K.6 [Management Of Computing And Information
Systems]: Security and Protection; D.4.6 [Operating Sys-
tems]: Security and Protection—Invasive software, Secu-
rity kernels, Verification

Keywords

code fingerprinting; codeid; memory analysis; virtual ma-
chine introspection; cloud security; malware detection

1. INTRODUCTION

Identifying executable binary code-operating system (OS)
kernels, libraries, applications, malicious code (malware)—is
the main focus of almost all (proactive) security monitoring,
and (reactive) forensic analysis applications. For instance,
fingerprinting of the OS kernel enables memory forensic tools
(such as Volatility [18,[5]) to parse the memory with the data
structures pertinent to the kernel version; fingerprinting of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

CODASPY’15, March 24, 2015, San Antonio, Texas, USA.

Copyright 2015 ACM 978-1-4503-3191-3/15/03...$15.00
http://dx.doi.org/10.1145/2699026.2699104.

malware is at the core antivirus applications. Most incident
response and deep forensics techniques rely heavily on the
ability to recognize the exact code being executed on the
target system.

In an Infrastricture-as-a-service (IaaS) cloud environment,
(executable) code fingerprinting is a critical tool that en-
ables a large number of automated services, such as patch
management and host intrusion detection/prevention. More
generally, the trend is towards cloud providers providing ever
more sophisticated security-related services for their tenants.
Indeed, providers who monitor a large population of virtual
machines (VMs) are in a much better position to track at-
tacks in progress, and proactively identify and shield other
vulnerable VMs. This applies not only to network services,
but also to client code in virtualized workstations.

All such services are reliant on their ability to gather an
inventory of running code inside the VMs. Although it is
possible to obtain some of this information indirectly by
network scanning, or by examining the file system, such ap-
proaches are inherently incomplete as most applications do
not provide a network service, and tenants routinely encrypt
file system content. Thus, the only reliable approach is to
directly examine the physical memory of the VM.

In this paper, we present Codeldentifier (codeid)—a new
fingerprinting technique and tool for relocatable code that
identifies memory-resident code based on the content of relo-
cation tables. Codeldentifier divides an executable file into
memory-page size blocks, and generates signatures for the
blocks. A block signature consists of two components: 1) re-
locations (or pointers) in the code of the block identified by
relocation table, and 2) the offset values of the relocations
from the start of the block. The signatures are then used to
identify the exact in-memory pages represented by the sig-
natures. We have exhaustively evaluated codeid signatures
on more than 50,000 sample executables (of kernel, kernel
modules, applications, libraries, and malware), and estab-
lished that the signatures are quite unique and are able to
distinguish close versions of the code. The empirical results
show that codeid detects in-memory code pages with almost
100% accuracy, and no false negatives.

The main contribution of this work is the development of
codeid, which is a) accurate—it yields precise results, even
for closely related code; b) robust—it works with partial in-
formation and can perform remnant detection; c¢) perfor-
mant—the resulting tool is fast enough to be of practical use
in scanning live VMs; and d) fully automated—it requires no
human in the loop to generate and use new signatures.

The rest of the discussion is organized as follows: Sec-
tion 2 provides a brief summary of related work; Section 3
presents the main concepts and techniques used in our solu-
tions; Section 4 contains the experimental validation of the
proposed approach; and Section 5 summarizes our findings
and conclusions.

2. RELATED WORK

Prior work on executable fingerprinting techniques—apart
from malware detection, which is outside the scope of this
discussion—focus primarily on operating system (OS) kernel
version detection.

2.1 Deep analysis techniques

Deep analysis approaches parse and (partially) interpret
the memory capture with the express goal of finding unique
implementation traits that separate different kernels.

Gu et al. [3] propose OS-Sommelier, which extensively
parses and analyses memory dump for kernel version identi-
fication, such as virtual-to-physical address translation, and
disassembling the code. In order to create a signature of a
kernel, the tool takes a snapshot of the memory that con-
tains the kernel, and then processes the snapshot in three
main steps.

First, it searches the entire snapshot and identifies the
page global directory (PGD) for virtual-to-physical address
translation. Second, it identifies the kernel code-the PGD is
used to make clusters of the similar read-only pages, assum-
ing that the kernel-code pages are read-only for code pro-
tection. Next, the cluster which contains core-kernel code
is identified; this is necessary since the same module can
be loaded with different kernel versions. The authors use
two particular instructions that are empirically identified as
being used only by the core kernel, and not by modules.

Third, the tool generates the signatures, which are the
cryptographic hashes of the kernel pages. Since the kernel
code contains pointers whose values change when the kernel
loads in different locations in the memory, this step is pre-
ceeded by zeroing out of all such pointer values before com-
puting the hashes. To identify the locations of the pointers,
the code is (partially) disassembled. Thus, a kernel signa-
ture consists of the obtained set of page hashes. Finally,
when a kernel version needs to be identified in a memory
image, the same steps are repeated on the target to create
signatures, which are then compared with the known sig-
natures. We discuss OS-Sommelier’s performance in more
detail in our evaluation section.

Lin et al. |8] propose Siggraph, which relies on identify-
ing in-memory kernel data structures. Since data structure
definitions vary across operating systems, Siggraph can be
used for OS fingerprinting. The main limitation is that well-
known data structures tend to be stable across at least minor
version releases. More generally, data structures changes are
unpredictable and require manual reverse engineering effort
whenever a new version comes out.

Christodorescu et al. 2| employ the interrupt descriptor
table (IDT) for kernel version identification. The table is an
array of interrupt vectors containing pointers to interrupt
handler code. Since interrupt handler code tends to change
over time, the authors compute the cryptographic hash of
handler code, and use them as signatures to identify different
kernels. Since this approach requires the value of the IDTR
register to locate the IDT, it can only work on a live system.

Volatility |18] is a popular framework for deep forensic
analysis of memory images. Since knowing the precise ker-
nel version is critical for a lot of its functions, it maintains
the profiles of kernel version for parsing memory captures
and applying the correct set of data structure definitions.
Volatility provides the imageinfo [4] tool to identify the
various MS Windows versions. The tool scans the whole
memory dump using predetermined signatures to find ker-
nel debugging symbols table, which also contains the exact
kernel version information. The Volatility approach has two
main drawbacks: a) it is fragile in that the signature values
can be altered to make Volatility not to find the table; and
b) it is not fully automated and requires an expert analyst
to drive the discovery process.

2.2 Other fingerprinting techniques

Quynh [13| proposes UFO-a kernel code-independent OS
fingerprinting technique, which uses CPU register states for
kernel version identification. UFO utilizes the fact that the
protected mode of the Intel platform enforces few constraints
on how OS is implemented. Thus, different OS versions use
different ways of setting up low-level data structures and
other details, such as global and interrupt descriptor tables
(GDT and IDT) [15] [9] differently. As a results, the values
of some registers, such as base and limit values of GDTR and
IDTR, are different. UFO uses a fuzzy matching approach
and looks for the closest match, giving different weights to
each parameter in a signature. While matching signatures, it
computes the sum of the weights of each parameter matched
and the signature with highest weight represents the kernel
version. In [3], Gu et al. evaluated UFO on different versions
of Linux and Windows kernel and concluded that it does not
work well on many MS Windows kernels and close versions
of Linux kernel. Importantly, UFO is restricted to work only
on a live system and cannot be used on memory captures.

Historically, there are a number of network fingerprinting
tools (such as nmap [10] and Xprobe2 [20]) that remotely
identify the kernel version of a target system based on the
packets being exchanged. Since the TCP/IP stack is im-
plemented differently by operating systems, the differences
in the reply of the crafted packets can be used to identify
the OS versions. Such an approach is not relevant to our
scenario and is, generally, inherently unreliable.

One accurate approach to identify the kernel version is to
examine the file system on the hard disk of target system
and, for instance, maintain a database of the file hashes for
different version of the kernel. Virt-inspector [17] is a tool
that provides the capability to identify the kernel version on
hard disk, USB, CD etc. It uses libguestfs [6] library to ex-
amine the file system on any non-volatile media. The main
constraint here is the requirement to access non-volatile me-
dia, which in our case is not given.

3. RELOCATION-BASED CODE FINGER-
PRINTING

3.1 Problem statement & requirements

Given a physical memory capture, our goal is to identify
the presence of a known piece of code in it, which is running
at an arbitrary location. Indeed, modern operating systems
routinely use address space layout randomization (ASLR)
and purposefully choose a random starting address. This

Signatures

" Offset Pointers
‘ 0x534 OxFFF45334

0x598 OxFFF34455

Executable File Extraction Signature Generation ‘
h ‘ B 0x678 | OxFFFF3233

o N i
2 Divi Page-wi Adj
£ | 0534 Extract Extract V! & age-wise dJUSt.
S 0x5948 \ | relocation N ointer \ | file into \ | grouping of) |offsets with \—l) .
1 P /" memory offset and beginning | Offset | Pointers
2 table values . s OxFFF42323
3 643 pages pointers of page

OxFFF32222

0x566 OxFFFF2222

Figure 1: Codeldentifier signature generation process

means that code must be able to execute regardless of its
starting address. This property can be accomplished in one
of two principle ways: a) by generating position-independent
code—resulting in a position-independent executable (PIE)—
that can be loaded at any address with no modifications to
the code; b) by generating relocatable code—resulting in a
portable ezecutable (PE)—whose absolute addresses are ad-
justed at load time using the chosen base address value.

For PIEs, since no tranformations are applied to the code
at load time, there is a direct mapping between the con-
tents of the file containing the binary and the correspond-
ing contents of RAM pages during execution. This leads to
a straighforward approach to identifying the executable in
memory: first, generate the (cryptographic) hash of all code
pages for the binary, then compare the set to the hashes of
all RAM pages of the target.

Therefore, in this work, we assume that the target code is
in PE format, which is the case for nearly all kernel modules,
libraries, and applications for the MS Windows platform.

Given our motivating problem of supporting security and
management services in a large-scale virtualized environ-
ment, any practical solution should address at least three
basic requirements:

Accuracy. The solution must have very low false posi-
tive/negative rates, and must be sensitive enough to dis-
tinguish among different version releases of the same exe-
cutable.

Robustness. The solution should be able to work with
partial information in order to accommodate paging effects
and remnant detection from completed executions.

Throughput. The solution must have high throughput and
low overhead to facilitate fast response and low implemen-
tation cost.

3.2 Overview

Recall that relocation is the process of assigning load ad-
dresses to the different program components and adjusting
the code in the loaded program, correspondingly. The relo-
cations are the pointers in the code that need to be adjusted
depending on where the executable is loaded into memory.
An executable file contains a relocation table, which lists
the locations of the pointers in the code as offsets from the
beginning of the file. The table itself is only needed at load
time, and is subsequently discarded.

As it turns out, the combination of the location and the
value of pointers naturally provide unique signatures for the
pages of an executable file that we can use as a basis for a
fingerprint. For that purpose, codeid 1) extracts the reloca-

Table 1: Example: Pointer difference.
Pointer | In-memory In-file Difference
location | pointer («) | pointer (3)

0x16 0xF8CC24E0 | 0x000104E0 | 0xF8CB2000
0x3B 0xF8CC2490 | 0x00010490 | 0xF8CB2000
0x40 0xF8CC2500 | 0x00010500 | 0xF8CB2000
0x5A 0xF8CC2584 | 0x00010584 | 0xF8CB2000

tion table from the file; 2) divides it into page-sized blocks;
and 3) uses the relocations to create separate signatures for
each page. The signature itself consists of a list of offsets to
pointers from the beginning of a page, and the corresponding
pointer values. Figure [1|illustrates the process. Given a set
of codeid signatures, the memory capture is split into pages
and each one is compared (as explained below) with every
page signature in the set. Matches are tallied per known
executable to determine the best match.

3.3 Design Rationale

As outlined above, signatures are created from the exe-
cutable file but are compared to live memory pages, and
creates several challenges we need to overcome. The first
one is ASLR.

When an executable file is created, it is assigned a no-
tional base address and all absolute addresses of pointers in
the code are given relative to the base address. If the file is
loaded into the memory at the notional base address, then
all pointers could be used as is, and there would be a one-to-
one correspondance between on-disk and in-memory repre-
sentations of the code page; the comparison would be trivial.
However, due to ASLR, the file is loaded with a randomized
base address, rendering a direct comparison meaningless.

Figure [2] illustrates the difference in pointer values when
the file is not loaded at its pre-determined base address.
It shows two code snapshots of a hello world kernel driver
for MS Windows. The first snapshot is taken from the
memory when the driver is loaded at the memory loca-
tion 0xF8CC2000. The second snapshot is obtained from the
driver file, whose pre-determined base address is 0x00010000.
Since the base addresses are different, the pointer values are
also different.

However, as shown on the diagram, if we subtract the
pointer values from the base address, the resulting offset
values are the same in both cases. This means that, instead
of directly using pointer values in signatures, we can com-
pute and use offset values in the signatures. To compute

Code in Memory

In-Memory Base Address: O0xFSCC2000

Pointer — Base Address = Offset

Relocation 00000000| 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 ..iuienienennnnn
Table 00000010| 8b ff 55 8b ec 68 E0O24 CC F8 e8 39 00 00 00 83 U..h.$ 9 OxF8CC24E0 — 0xF8CC2000 = 4E0
110x16 00000020| ¢4 04 5d c2 04 00 cc cc cc cc cCc cC cC CcC cC cC F
2 03B | - 00000030| 8b ff 55 8b ec 8b 45 08 c7 40 34 90 24 CC F8 638 ..U...E..@4.S5..h|0xF8CC2490 - 0xF8CC2000 = 490
'3 0x40 ,,,}00000040\ 0025 CCF8 8 0f 00 00 00 83 c4 04 33 cO 5d c2 P 3.].|0xF8CC2500 - 0xF8CC2000 = 500
4 OxBA 00000050 08 00 cc cc cc cc cc cc ff 25 8425CCF8 cc cc %.%....|0xF8CC2584 — 0xFS8CC2000 = 584
00000060| 44 72 69 76 65 72 20 75 6e 6c 6f 61 64 69 6e 67 Driver unloading
00000070| Oa 00 cc cc cC CC CC CC CC CC CC CC CC CC CC CC tvvenenennnnnnns
Index N 00000080| 48 65 6c 6¢c 6f 2c 20 57 6f 72 6¢ 64 0Oa 00 Hello, World..

Pointer Location

Code in File

Pre-determined Base Address: 0x00010000

Pointer — Base Address = Offset

00000000| 00 00 00 00 00 00 00 OO 0O 0O 0O 00 00 00 00 0O

00000010| 8b ff 55 8b ec 68 EO 04 0100 e8 39 00 00 00 83 ..U..h.o.o... 9....|0x000104E0 - 0x00010000 = 4E0
11016 00000020 c4 04 5d c2 04 00 cc cc cc cc cc cC cC cC cC ceC F
2 0x3B | - 00000030| 8b ff 55 8b ec 8b 45 08 c7 40 34 90 04 01 00 68 ..U...E..@4....h|0x00010490 - 0x00010000 = 490
3 0x40 ,)|00000040| 0005 0100 e8 0f 00 00 00 83 c4 04 33 cO 5d €2 ..vvvvvnnnn. 3.1. |0x00010500 — 0x00010000 = 500
‘4 Ox5A 00000050 08 00 cc cc cc cc cc cc ff 25 840501 00 cc cc % 0x00010584 — 0x00010000 = 584
Relocation 00000060| 44 72 69 76 65 72 20 75 6e 6c 6f 61 64 69 6e 67 Driver unloading

00000070 ©Oa 00 cc cc cc cc cc cC CC CC CC CC CC CC CC cC
Table 150000080 48 65 6c 6c 6f 2c 20 57 6f 72 6c 64 Oa 00

Hello, World..

Figure 2: Example: ASLR impact on pointer values, and consistency in offsets

the base address, we use a cross-pointer differential tech-
nique. Since all pointers are derived from the base address,
the difference between any pointer’s value in its on-disk and
in-memory representations is equal to the difference of base
addresses of code in file and memory.

The difference of base addresses of kernel module in mem-

ory and file (from the last example) is 0xF8CC2000 - 0x00010000

= 0xF8CB2000. The relocation table has four elements and,
as shown in Table [T} the pointer difference is always equal
to the difference in base addresses.

More formally, given n relocation in a code page, we de-
note each relocation in memory by «a(¢) and in file by 3(3),
respectively (0 < i < n). Then a successful match is equiv-
alent to the following predicate:

VO <i<mali)—B6)=a(i+1)—BG+1) (1)

Computing base address of in-memory code. By using the

relative pointer differences, we avoid the need to know the

base in-memory address B,,. However, knowing the base

address is useful for other purposes, such as the creation

of more robust signatures for data structure (e.g. EPRO-

CESS). Therefore, we extend the technique to derive it.
Let By be the base address of the in-file code. Then,

Bm = a(i) — (i) + By,for any i : 0 <14 < n. (2)

(It should be clear that this technique is not an attack on
ASLR-an attacker would need access to RAM before run-
ning the calculation.)

Paging Considerations. The effectiveness of codeid is
clearly dependent on the number of pages actually present in
main memory. For the MS Windows kernels we found that
about 25% are marked nonpaged, which makes them a reli-
able target. Kernel modules (drivers) are also nonpaged by
default. For user applications our observations show that,
under normal conditions, the effects are negligible for the
applications we observed. (Further work would be needed
to study the behavior under memory shortage conditions.)

Algorithm 1 Single page signature match

page_match(P, S) : boolean
diff = uwint32(P[S[1].offset]) — S[1].ptr
for j =2 to |S| do
if (uint32(P[S[j].offset]) — S[j].ptr) # diff then
return false
return true

We use a majority-wins approach, which in practice elim-
inates (Section 4.4) much of the paging-related noise. One
further refinement is to ignore pages marked as discardable
(about 13% of the kernel) as they have almost no chance of
being in memory.

Correct page alignment between in-file and in-memory
pages for the executable is another potential problem. For-
tunately, our study found that these are always aligned so
no additional effort is necessary.

3.4 Signature Comparison

Recall that a (page) signature consists of a list of offset-
pointer (O-P) pairs (<offset, ptr>), and that a file finger-
print consist of a list of such signatures. More formally, let
F be a file fingerprint, |F'| be the number of page signatures
it contains, and Sy, k = 1..|F| be the individual signatures.

Let |Sk|, k = 1..|F| be the length (number of O-P pairs) of
each constituent signature, and S;[j],i = 1..|F|,j = 1..|S]
be the individual <offset,ptr> O-P pairs. Also, denote by
| M| the size of the memory image in pages, and by Py, k =
1..|M| the content of individual pages (byte arrays), each of
which is of size |P|. We use the function wint32(Px[j]),j =
0..|P| — 3 to denote the extraction of a 32-bit value from
page Py, starting at location j.

We express the page_match predicate from equation
between a raw memory page P and a signature S in the al-
gorithm Thus, a match between fingerprint F' consisting
of signatures 51, ..., S|r| and memory image M consisting of
pages Pi, ..., Py returns the number of signatures matched

Algorithm 2 Count page signature matches

match_count(F, M) : int
count =0
for i =1 to |M| do
for j =1 to |F| do
if signature_match(P;, S;) then
count = count + 1
return count

Algorithm 3 Best fingerprint match(es)

best_match(RS, M) : int
m = 0,result = &,
match[l..|RS|] = {0, ...,0}
for i =1 to |RS| do
match[i] = fingeprint_match(RS;, M)
m = maz(m, matchl[i])
for i =1 to |RS| do
if match[i] == m then
result = result U RS;
return result

Algorithm 4 Creating a filter table.

filter = new hashtable()
for i =1 to |RS| do
for j =1 to |S;| do
key = S;[j]-offset | (wint32(S;[j].ptr) & OxOFFF)
value = filter.lookup(key)
if value == nil then
value = new set()

value = value U S;
filter.put(key, value)

Algorithm 5 Signature matching with O-P filtering.
for i =1 to |[M| do
for j =1to|P|—4do
key = j | (uint32(P;) & 0xOFFF)
candidates = filter.lookup(key)
for S in candidates do
if signature_match(P;, S) then
result = result U S
return result

(Algorithm. The result of matching all the signatures in a
reference set RS would simply return the identities of those
signatures that are equal to the highest fingerprint match
(Algorithm [3)). There are some optimizations that can be
done in practice to improve the computation but, fundamen-
tally, the complexity is proportional to |M|x|RS|. Scanning
through all of memory is unavoidable (in the general case)
but the reference set could potentially be preprocessed to
speed up the computation.

The key insight in this respect is the recognition that the
least significant 12 bits in a pointer value (for a 4KiB page)
remain constant after load-time adjustments (Table [1} Fig-
ure . One way to take advantage of this property is to cre-
ate a hashtable that uses the concatination of 12-bit page
offset and 12-bit pointer value as a key. The correspond-
ing value includes the set of all signatures that contain that
particular O-P combination. During the match process, the

Table 2: Test data used in evaluations
| Dataset || #1 | #2 | #3 | #4 || Total |

[Files | 20 [17,010 | 26 | 34,014 [51,070 |

table serves as a filter that limits the matching process to
signatures that contain the given O-P pair.

The process of creating the filter is illustrated by Algo-
rithm [4] where the ”|” sign stands for concatination and the
"&” sign for the bitwise AND operation. Algorithm [f]shows
a modified version of the baseline approach that incorpo-
rates filtering. Once the results are obtained, it is trivial to
pick out the best match(es).

Conceptually, the filtering does not alter the asymtpotic
complexity—in the worst case, all signatures could end up in
the same set. However, under the assumption of relatively
uniform distribution of the O-P keys (which we have ob-
served empirically), it does reduce the number of signature
comparisons by a substantial constant factor. As our exper-
imental results in the following section show, this makes a
big difference for larger sets, which is the most important
case.

4. EVALUATION

We have developed a proof-of-concept implementation in
C and used to evaluate our technique. The current version
of codeid is approximately 1,000 lines of code and works
with 32-bit MS Windows executables.

4.1 TestData

We used four datasets (Table with a total of 51,070
executable files: Dataset #1 (OS Kernels) contains the ker-
nels for MS Windows 2000 Server, XP SP1 (service pack 1),
SP2 and SP 3, Vista with SPO (initial release), SP1, and
SP2, Windows 7 SP0 and SP1, and Windows 8 and 8.1.
Since we are only evaluating 32-bit Windows executables,
we also consider the kernel version (ntkrnlpa.exe) that has
physical address extension (PAE) support, in addition to
ntoskrnl.exe that has no PAE support.

Dataset #2 (MS Windows system libraries and ezxecuta-
bles) consists of the application (.exe) and library (.d11)
files of system32 folder from 11 different versions of MS
Windows (2000 Server, XP, Vista, 7, and 8).

Dataset #3 (popular applications) contains recent versions
of eight popular MS Windows applications:

Adobe Reader (AcroRd32.exe), AVG antivirus (avgui.exe),
Google Chrome (chrome.exe), Command Prompt (cmd.exe),
Firefor (firefox.exe), Internet Ezplorer (iexplore.exe),
Windows Media Player (wmplayer.exe), WinRAR Archiver
(WinRAR.exe). We also obtained the old versions of the
applicationq’] installed them, and extracted the executable
files that get loaded into memory.

Dataset #4 (malware) consists of a sampling of malware
executables obtained from the VX Heaven public repository
[19]. The samples are already split into several different
categories—backdoor, constructor, exploit, flooder, packed,
rootkit, trojan, virus, and worm.

4.2 Relocation Prevalence & Code Coverage

The first obvious questions to study are the prevalance of
relocations in executable files—how many relocations per page

'From http://www.oldapps.com/

http://www.oldapps.com/

Table 3: Set #1 (kernels) relocation prevalence and
coverage.
| Version [Prevalance (P1) | Coverage (C1) (%) |

2000 Server 66.26 85.90
XP SP1 59.97 88.02
XP SP2 60.12 88.50
XP SP3 56.26 88.08

Vista SP0O 56.25 84.61
Vista SP1 55.25 85.99
Vista SP2 55.31 85.79
Win 7 SPO 54.28 86.04
Win 7 SP1 54.05 86.14
Win 8 51.64 91.89
Win 8.1 51.64 91.89

Table 4: Set #2 (system) relocation prevalence and
coverage.
| Version || Files | P, | [|
2000 Server 811 | 99.77 | 73.51
XP SP1 923 | 98.91 | 72.90
XP SP2 928 | 94.98 | 74.39
XP SP3 || 1,023 | 95.01 | 74.25
Vista SPO || 1,623 | 99.66 | 70.96
Vista SP1 || 1,641 | 99.58 | 70.99
Vista SP2 || 1,657 | 99.98 | 70.60

Win 7 SPO || 1,787 | 101.05 | 70.63
Win 7 SP1 || 1,987 | 101.95 | 70.21
Win 8 || 2,259 | 116.73 | 71.68
Win 8.1 || 2,371 | 116.36 | 72.43

| Weighted Avg || | 104.12 | 71.72 |

can we expect to find—and (code) coverage—what fraction of
the pages in the executable contain relocations.

Specifically, we define P;,i = 1..4 to be the mean number
of relocations per page (for each version/category) of dataset
4. Similarly, C;, 7 = 1..4 is the percentage of pages containing
relocations (per version/category).

Tables [3] through [f] present a summary of our findings. In
all cases we found the minimum number of relocations, if
present, to be at least four, which is above the minimum of
two necessary to build a page signature.

4.3 Collisions & Signature Overlap

Clearly, the accuracy of the codeid matching process de-
pends critically on the uniqueness of the page and file sig-
natures. In this section, we study the collision rates of sig-
natures across different executables in our dataset.

Recall that each file signature is a set of page signatures
with the latter consisting of a sequence of offset-relocation
(O-R) pair elements. For the rest of this section, we quantify
the level of O-R collisions among page signatures.

Let the total number of O-R pairs in a page signature be
r; and let ¢; be the number of collisions (matching pairs in
another signature) for page j. We define the overlap rate O;
for page j as O; = ¢;/r;,7 = 1..N (N is the total number
of pages).

Tables [7] through present the distribution of O-R col-
lisions per page by quantile, as well as the special cases of
0% and 100% collisions (a blank cell indicates zero, while

Table 5: Set #3 (applications) relocation prevalence

and coverage.
| Application || Py Cs|

Adobe Reader 9.4 75.67 | 7.41

10.1.4 75.66 | 72.05

11.0.03 79.92 | 90.60

AVG 2012 || 119.48 | 93.37

2013 || 106.87 | 94.18

2014 || 107.04 | 94.08

Chrome 33.0.1750.146 58.96 | 66.16

33.0.1750.154 58.98 | 65.83

34.0.1857.116 57.91 | 68.56

cmd 6 96.12 | 70.21

6.1 93.88 | 90.95

6.2 || 107.91 | 83.33

Firefox 23 || 127.33 4.69

24, 25 78.00 | 3.17

27, 28 79.00 | 3.17

IExplorer 7 || 109.57 9.27

8 || 142.60 | 6.21

9 98.33 | 3.35

10 89.50 2.20

Media Player 11 88.00 5.13

12 || 108.00 5.13

WinRAR 3.91 || 108.60 | 77.22

4.2 || 105.48 | 77.65

5.01 99.10 | 78.45

Table 6: Set #4 (malware) relocation prevalence
and coverage.

| Category || Files | P, | Ci |
Backdoor 8,654 | 372.00 | 71.57
Constructor 106 | 316.08 | 66.95
Exploit 140 | 258.00 | 66.51
Flooder 136 | 220.59 | 72.84
Packed 43 | 343.00 | 60.65
Rootkit 562 | 258.00 | 60.62
Trojan || 22,744 | 464.60 | 71.78
Virus 398 | 310.67 | 71.88
Worm 1,231 | 340.00 | 74.29

| Weighted Avg || | 428.87 | 71.59 |

Table 7: Set #1 signature overlap distribution.

[Version [0% [20% [40% [60% | 80% [99% [[100%]|
Win2000 100
WinXP 100
WinVista || 25.30 | 72.18 | 1.89 | 0.16 | 0.21 | 0.26
Win7 65.91 | 33.88 | 0.21
Wing 100

0.00 means a rate of less than 0.001%). For example, in Ta-
ble m the row for Vista shows that 25.3% of the pages had
no overlap, 72.2% had between 1 and 20 percent overlap,
1.89% had between 21 and 40 percent overlap, and so on.
(The results are aggregated by major version, but all pairs
of page signatures were compared across the set.)

Recall that, in practical terms, the only collisions that
truly matter are the 100% ones—the rest of the columns are
presented for completenes. As long as there is at least one

Table 8: Set #2 signature overlap distribution.

[Version [0% [20% [40% [60% [80% [99% [[100% ||
Win2000 |[76.66 | 22.80 | 0.47 | 0.04 | 0.01 | 0.02
WinXP1 || 78.40 | 21.20 | 0.36 | 0.02 0.01 || 0.00
WinXP2 || 86.27 | 13.59 | 0.13 0.00 | 0.01 || 0.00

WinXP3 94.50 | 4.67 | 0.31 | 0.19 | 0.14 | 0.16 0.03
WinVista || 99.93 0.06 | 0.01 | 0.00
Win7 99.81 0.17 | 0.01 0.01
Win8 99.83 0.17 | 0.00 0.00

Table 9: Set #3 signature overlap distribution.
[Application [0% [20% [40% [60% [80% [99% [[100% ||
AVG 2012 |[12.68 [61.97 | 21.75 | 3.50 | 0.11
2013 || 13.77 | 69.96 | 12.15 | 4.01 0.11
2014 || 100

Chrome
33.0.1750.146 || 38.93 | 61.07
34.0.1857.116 || 36.84 | 63.16
IExplorer 7 || 42.86 | 50.00 | 7.014

8 100
9 100
10 || 50.00 | 50.00

Table 10: Set #4 signature overlap distribution.
[Category [[0% | 20% | 40% | 60% | 80% | 99% || 100%]|

Backdoor || 61.02 | 10.47 | 00.48 | 00.17 | 00.16 | 00.54 || 27.16
Constructor || 98.75 | 01.20 | 00.01 | 00.03 00.01
Exploit || 88.42 | 11.29 | 00.24 00.02 | 00.02
Flooder || 96.29 | 02.77 | 00.10 | 00.12 | 00.20 | 00.39 || 00.14
Packed || 92.11 | 07.89

Rootkit || 95.14 | 03.12 | 00.07 00.09 | 00.56 || 01.01
Trojan || 79.80 | 10.48 | 00.72 | 00.34 | 00.32 | 00.63 || 07.70
Virus || 95.17 | 04.64 | 00.02 00.01 | 00.02 || 00.13

Worm || 99.45 | 00.24 | 00.04 | 00.07 | 00.10 | 00.07 || 00.03

unique O-R pair in the page signature, the page_match pred-
icate (Algorithm [I) would return false so no confusion will
take place.

For the set #1 experiments (Table , we generated sig-
natures for a total of 20 kernel files (both with and with-
out PAE support), resulting in 11,472 page signatures and
641,636 O-R pairs. Clearly, the main result is that no two
pages completely overlap; that is, all page signatures are
unique. Further, on most versions, there is no O-R overlap
at all.

Set #2-17,000 system files—present a very similar picture
(Table , with the additional trend of decreasing overlap
from older to newer versions. We are not in a position to
definitively explain the trend; one possibility is that newer
compiler optimizations lead to less stable O-R configurations
in response to minor code changes.

Popular applications (set #3) further confirm the unique-
ness of relocations. Five out of the eight applications—Adobe
Reader, cmd, Firefox, Media Player, and WinRAR contain
only non-overlapping page signatures. This is a particularly
important property for applications like Firefoxr and Me-
dia Player that have only 2-5 page signatures per file. It is
notable also that the five Firefor versions cover a release pe-
riod of only eight months (Aug 2013-Apr 2014). The overlap
for the remaining three applications (Table E[) stays almost
completely in the lowest quantile.

Although malware detection/classification is not the main
target application of this work codeid can do a thorough
job of finding known malware executables. Table shows

a summary of our study of set #4 (976,754 page signatures).
Almost all the signatures are quite distinct; the only major
exceptions are the backdoor and (to a lesser degree) trojan
categories, where full signature overlap is observed in 27.12%
and 7.67% of the cases, respectively.

Using similarity hashing |14] and the sdhash tool |16] on
the files reveals that the backdoor set contains 964 closely re-
lated versions of Backdoor.Win32.Hupigon (similarity score
95 out of 100), and it is the main reason for signature col-
lisions. Using the same approach we find that Trojan-
Downloader.Win32.Banload contributes 718 near-identical
versions accounting for 4.4% of the samples (and collisions)
in the category.

In summary, our collision study finds ample evidence for
the assertion that page relocation tables provide a set of
characteristic attributes for almost any MS Windows exe-
cutable. The only exceptions we found are binaries that are
nearly identical, as determined by static analysis.

4.4 Accuracy Analysis

In this section, we measure the effectiveness of codeid
on page and file level in both kernel and user space against
actual memory captures. We use VMware’s VM snapshot
mechanism to obtain the RAM targets, which are 2GB in
size.

4.4.1 Page-level accuracy

Our first study quantifies the false positive (FP) and false
negative (FN) rates for page signatures. For that purpose,
we need a method for establishing the ground truth, and
due to the uncertainty of paging, simply loading/running
the binary is not enough to assume that all pages would be
in memory. We need a method to ascertain which individual
pages are physically present in memory.

FEstablishing ground truth. To establish a baseline, we ana-
lyze the memory image using libumi |7} [11] library (which is
an outgrowth of the earlier work on XenAccess [1]). Unlike
our approach, libvmi finds and interpretes the relevant kernel
data structures, such as LDR_DATA_TABLE_ ENTRY, EPROCESS,
PEB, and PEB_LDR_DATA. Using this information, it can iden-
tify the virtual base address and size of kernel, as well as
other executables, including dynamic link libraries (.DLL),
applications (.EXE), and kernel modules (.SYS).

Specifically, we employ libumi to map the running pro-
cesses to a set of physical pages. Using the map, we define
specific page targets for codeid; that is, we expect the tool
not only to show a match for the correct executable, but
also to point to a page owned by the respective process.

Under this definition of the ground truth, we define the
four possible experimental outcomes as follows:

e True Positive (TP): codeid has identified the correct
(memory page) signature and the page belongs to the
correct process.

e False Positive (FP): codeid has identified the wrong
signature or the page does mot belong to the correct
process.

e True Negative (TN): codeid yields no match and the
memory image does not contain the target binary.

e Fulse Negative (FN): codeid yields no match and the
memory image does contain the target binary.

Table 11: Page-level accuracy: kernel modules
Version || Pages| FPR | FNR || Accuracy|

XP1 1,517 | 0.0000 | 0.0000 1.0000
XP2 2,001 | 0.0020 | 0.0000 0.9980
XP3 1,922 | 0.0000 | 0.0000 1.0000
Vista0 3,267 | 0.0083 | 0.0000 0.9917
Vistal 3,342 | 0.0009 | 0.0000 0.9991
Vista2 3,454 | 0.0026 | 0.0000 0.9974
Win7 3,790 | 0.0000 | 0.0000 1.0000
Win7.1 3,717 | 0.0016 | 0.0000 0.9984
Win8 5,193 | 0.0029 | 0.0000 0.9871
Win8.1 5,336 | 0.0002 | 0.0000 0.9998

Overall || 33,539 | 0.0019 | 0.0000 [| 0.9981 |

As it turns out, the criteria are in need of some refinement.
The first adjustment is for FP results—in addition to the page
mapped to the address space of the running process, codeid
would also find the original page in the file cache (if present)
regardless of whether the process is still running. (From the
point of view of codeid, it looks as if the binary was loaded
exactly at the nominal base address.) This special case can
be detected by simply keeping a crypto hash of the page,
and-depending on use case-turn hash-based page matches
on/off. Therefore, we exclude identical page matches from
the FP results.

The second adjustment is necessary for classifying FN out-
comes. Upon inspecting preliminary results, we realized
that in some cases, although the page is mapped, it con-
tains only 0x00 or OxFF bytes. Clearly, such an outcome is
a true negative—although it trivially satifies equation 750
we filter out from the FN set all pages with precisely zero
(Shannon) entropy.

For these experiments, we split all the processes found in
the memory capture into kernel and non-kernel, and Tables
and summarize our respective observations. The first
column shows the MS Windows version, followed by the to-
tal number of pages extracted, the FP rate, the FN rate,
and the standard measure of accuracy:

TP +TN
TP+TN+FP+FN’

Accuracy =

The first important observation is that the there are zero
false negatives. This is to be unexpected—if the page is in-
deed in memory, it must satisfy the page_match predicate.

The presented false positive rate is a conservative esti-
mate and can be further improved—manual examination of a
sampling of the false positive results indicate that they are
triggered primarily by low (but not zero) entropy pages that
could further be filtered out.

Overall, the accuracy—which in the absense is false posi-
tives is equal to the TPR—is consistantly high across both
sets. By aggregating the results, we conclude that the over-
all page-level accuracy is 0.9977.

4.4.2 File-level accuracy
For evaluating the file-level accuracy, which would be the

user-experienced performance, we considered two case studies—

kernel modules and applications.
Kernel accuracy. First, we focus on the classification er-
ror across 10 different versions of the kernel modules. The

Table 12: Page-level accuracy:non-kernel processes

| Version || Pages | FPR | FNR || Accuracy |
XP1 4,992 | 0.0048 | 0.0000 0.9952
XP2 5,962 | 0.0002 | 0.0000 0.9998
XP3 5,359 | 0.0011 | 0.0000 0.9989
Vista0 14,298 | 0.0034 | 0.0000 0.9966
Vistal 15,117 | 0.0064 | 0.0000 0.9936
Vista2 15,382 | 0.0000 | 0.0000 1.0000
Win7 16,232 | 0.0025 | 0.0000 0.9975
Win7.1 17,426 | 0.0007 | 0.0000 0.9993
Wing& 26,128 | 0.0010 | 0.0000 0.9990
Win8.1 28,452 | 0.0039 | 0.0000 0.9961

Overall || 149,348 | 0.0024 | 0.0000 | 0.9976 |

main rationale here is that, unlike other executables, we can
clearly attribute the modules to different versions.

There are a total of 182 different (by name) modules across
the ten MS Windows distributions. Of these, only 26 are
ideal targets as they are present in all versions. Since that
is too small a set, we expanded it to include all modules that
occur in at least three versions, which brings our evaluation
set to 157.

Tableshows the results of matching the memory images
(columns) vs. the corresponding file-derived codeid signa-
tures (rows); blank cells indicate zeroes. The GT column
represents the ground truth—the total number of binaries
present in the image, as per kernel data structures. The
TPR column is the TP rate—the ratio of the diagonal ele-
ment to GT. Thus, the ideal confusion matrix would consist
of the diagonal elements matching the corresponging GT
value, and all other elements set to zero.

The evaluation procedure emulates what our tool does—
for each file fingerprint, we match all the page signatures
against the memory capture and count the total number
of matches. All fingerprints that have signature matches
equal to the maximum number of matches are declared a
file match. Since more than one version may match the file,
row numbers may add up to more than the GT'.

Based on page-level results, we would expect near-perfect
true positive rates across the sets; indeed, with one excep-
tion, the rates range from 0.95 to 1.0. The difference in per-
formance is accounted for by differences in the fraction of
pages actually loaded by the page system. The overall frac-
tion of pages not loaded for all 10 images was only 2.2%-773
out of 33,539; however, the VistaSP1 image alone had 434
pages (out of 3,342) missing, or 13%. (The latter is probably
the result of a snapshot taken too soon after boot.)

Further examination showed that missing pages tend to be
clustered, typically in the form of entire modules having no
valid pages in memory. Thus, their effects are amplified in
our statistics (e.g., a missing module with a 3-page signature
represents only 0.1% of the page signatures for VistaSP1 but
a full 1% of the number of kernel modules).

Conceptually, such lapses are not the fault of codeid (or
any other comparable method) simply because the data to
be detected is not present. This underscores the importance
of page-level detection, and suggests that page-level perfor-
mance is a cleaner measure of algorithmic potential, as it
excludes the (unpredictable) effects of paging.

The use of VMware memory snapshots also presented us
with an additional (unplanned) test case-the detection of

Table 13: Kernel modules confusion matrix

\ [WiXP | Vista | W7 | W8 [GT | TPR]
60 10 5 61 | 0836

WinXP || 9 79 19 82 | 9634
5 20 74 74 | 9600

95 7 95 | 1.000

Vista 21 75 45 97 | 7732
15 19 95 95 | 1.000

) 102 57 102 | 1.000
Win7 58 103 103 | 1.000
, 110 110 | 1.000
Win8 109 || 109 | 1.000

Table 14: Firefor 23—29 confusion matrix
[Version [23 2425 26[27 28 29] GT |

Firefox 23 3
24 2
25 2
26 2 2
27 2 1
28 1 2 1
29 1 2

[\

NN NN NN W

VMware’s own drivers in the image. Since they are identical
across all cases, the matches were excluded from Table
However, in the initial results, they appeared as background
noise in the form of 2-5 additional file matches across all
cases. The result were illustrative in that page detection
per module was either 100%, or 0%, which corresponds to
the driver being either loaded, or not.

Application accuracy. In the previous section, we saw that
applications tend to have no page signature collisions, which
makes the testing of file-level matches a rather trivial pur-
suit. Therefore, we focused on testing across the different
versions of a single application. In an attempt to construct a
difficult target, we picked seven consecutive version of Fire-
fox—23 through 29—and performed the same analysis as with
the kernel case. Recall that Firefoxr has no more than three
pages with relocations, and individual releases come every
six weeks. Taken together, these present among the most
difficult challenges, as we would expect the executable to
change only incrementally and a large amount of common-
ality to be present across the binaries.

Nonetheless, the results in Table show that codeid is
successful in identifying all the pages of the correct exe-
cutable, and only two neighboring versions (25 and 26) are
tied.

4.5 Throughput

Recall that in Section 3.4 we proposed two versions of
the fingerprint matching algorithm. Both scan the given
memory image page-by-page and match them against the
reference set of signatures obtained from the files. The dif-
ference between the two is that the first one compares all
signatures with each page of memory, whereas the second
one scans memory byte-by-byte, reading 32-bits at a time,
and identifies more relevant signatures that can be matched
with the page. Thus, we would expect the second approach
to be more efficient for working with a large number as it
shifts the primary dependence of processing time from the
number of signatures to the size of pages.

We ran our PoC implementations on a 2.6GHz Intel Core
i7 CPU using a 2GB target (33,554,432 pages), and normal-

2,000
<=Content-filtered

1,800

-<=Baseline

1,600

1,400

1,200

|

1,000 ></
I
|
/

800

Execution Time (seconds)

600

400

200

10,000 20,000 30,000 40,000 50,000 60,000 70,000
Reference set size (page signatures count)

Figure 3: Algorithm speed performance: baseline
vs. content-filtered

ized results to represent time per GB of RAM processed.
Initially we use Windows XP SP2 memory dump to search
the page signatures of ntoskrnl.exe (381 in number) and then
later start using the 1,074 signatures of Windows 8.1 kernel.

Figure [3| depicts the throughput of the algorithms as a
function of the number of signatures. As we would ex-
pect, processing time for both algorithms grows linearly.
The baseline version starts much lower but rises at a much
steeper angle than the second algorithm, which filters the
candidate signatures before comparison; the crossover point
is around 1,000 signatures.

Another way to look at the relative performance it to con-
sider throughput in terms of of page-signature matches per
second that each version can perform. For the baseline, the
relevant number is 2.1-2.5 million for sets of 1,000+, whereas
the content-filtered version starts at a comparable 2 million
for the 1,074-signature set but steadily rises to 33.8 million
for the last set with 62,292 signatures. We should emphasize
that our reference implementation is not, of yet, optimized
for throughput. There are numerous opportunities to speed
up the processing, such as filtering out of pages based on
location and/or content, sampling of the signatures, further
indexing of the reference set, cache optimization, and con-
current processing. These are beyond the scope of this work,
which is primarily targeted at evaluating feasibility and suit-
ability of the proposed technique.

4.6 Comparison with prior work

Recall that prior work focuses on the specific problem of
identifying OS kernels, and not of identifying code in general.
Indeed, the approaches taken have focused on kernel specific
privileged instructions, the content of kernel data structures,
and special CPU registers, and cannot be extended to appli-
cations. Thus, for an apples-to-apples comparison, we limit
ourselves to identifying kernel versions.

Particularly, we used MS Windows kernels for evaluation
since they have relocatable code. The Linux kernel, on the
other hand is PIE and does not lie within the scope of the pa-
per. Furthermore, we have already argued that finding PIE
code is not a difficult problem as we can exactly compute

Table 15: Head-to-head comparison of codeid and
0S-Sommelier

Windows Version 0OS-Sommelier codeid
VMware | QEMU || VMware | QEMU

Win Server 2000 v v v v
Win XP SP1 X X v v
Win XP SP2 v X v v
Win XP SP3 v v v v
Win Vista SP0 v v v v
Win Vista SP1 v v v v
Win Vista SP2 X X v v
Win 7 SPO v v v v
Win 7 SP1 X X v v
Win 8 X X v v
Win 8.1 X X v v

hash of code pages (from the kernel image file) and find them
in RAM. Indeed, such an approach would be much simpler
and more robust than prior work, and would also cover any
other PIE code.

In [3], the authors have performed an extensive evalua-
tion showing that OS-Sommelier’s detection capabilities are
strictly better than prior approaches based on profiling the
kernel implementation using CPU (special) register values,
and the contents of the IDT [2].

Therefore, we consider OS-Sommelier to be the best rep-
resentation of the prior state of the art, and the most rele-
vant benchmark for our own work. The authors gracefully
provided us with their code so we could perform a head-to-
head comparison.

We used both QEMU [12] and VMware to perform the
evaluation of codeid and OS-Sommelier in order to see how
sensitive they are. Recall that OS-Sommelier needs a mem-
ory snapshot of the kernel to generate its signature. We used
one set of RAM captures for the signature generation phase,
and a different one to perform the actual experiments. Ta-
ble [T5] summarizes the results. As the results show, codeid
performed perfectly, whereas OS-Sommelier encountered a
variety of problems, eventually succeeding on only five of
the eleven versions tested. Below we briefly summarize our
experience with OS-Sommelier.

Positive results. The tool was able to successfully gener-
ate and recognize both QEMU and VMware images for the
following versions: Windows Server 2000, Windows XP SP1
and SP3, Windows Vista SP0 and SP1, Windows 7 SPO.

Inconsistent results. Windows XP SP2: The tool was
unable to disassemble the pages extracted from QEMU im-
age, which resulted in an "Unknown OS” error both during
generation and comparison attempts. However, image from
VMware causes no such problems.

Vista SP2 If QEMU image is used to generate signa-
tures, then a VMware-acquired image always gets identified
as Vista SP1. Similarly, if VMware image is used as the
base, then the corresponding QEMU gets misidentified as
Vista SP1.

No results. The tool was unable to generate signatures
for Windows 7 SP1, Windows 8, and 8.1. The specific cause
of the failure is that the tool cannot find a specific byte
pattern—-0f 20 d8 Of 22 d8-which leads to a crash.

The main takeaway is that the approach taken by OS-
Sommelier is too complicated and inherently fragile; it needs
human input with every new version of the OS. Even more

problematic is the high sensitivity to the hypervisor as in an
TaaS environment, multiple hypervisor options are the norm.

In constrast, our approach is robust since it only needs
the file of the executable (no memory image) to generate the
signature and works seemlessly across kernel and application
versions. Our technique looks at the code as data and its
performance would not be affected by minute details on how
the image was acquired. Our method generates perfectly
unique signatures for the kernels (Table E[) and detects the
exact kernel versions with 100% accuracy.

5. CONCLUSIONS

In this work we considered the problem of identifying
known executable code in memory images and proposed a
new solution based on using relocation tables as the key
identifying characteristic. We showed that relocation tables
tend to be quite distinct and, therefore, are an excellent ba-
sis for building a unique fingerprint. We demonstrated how
the in-file and in-memory version of the pages with reloca-
tions can be related as they get transformed by ASLR. In
the process, we developed a simple method to calculate the
base address of executable.

Unlike prior work, which relies heavily on deep manual
analysis and results in fragile methods that are not guaran-
teed to work on newer versions, Codeldentifier presents a
fully automated solution that is fast, accurate, and robust.
Our approach is not narrowly focused on kernel version iden-
tification but works for any executable, with the kernel being
a special use case; the only input required to generate a sig-
nature is the file containing the executable. No knowledge of
kernel data structures, or any interpretation of the memory
capture is necessary.

Our experimental evaluation showed that we can pinpoint
individual memory pages as belonging to a known executable
with zero false negatives and with 99.77% accuracy. We
can find trace evidence of prior executions in the file cache
and can distinguish them from pages belonging to active
processes. Codeldentifier identified perfectly all 11 kernels
tested and, in addition, can correctly map kernel modules
to their respective MS Windows version with a TP rate be-
tween 0.96 and 1.00. We showed that our method performs
well in distinguishing application with small signatures and
close versions. Specifically we demonstrated successful de-
tection and identification of seven consecutive versions of
Firefor—the most difficult application in our test set.

We have developed a scalable page-signature matching
algorithm, which can perform 33.8 million page-signature
matches per second (on a sigle core) with a reference set
containing over 62,000 page signatures. We expect future
work to speed this by at least a factor of 10 by preprocess-
ing the reference set and the memory image.

The main limiting factor to the presented method is the
unpredictability of the paging system; our experience shows
that, under normal workloads, this is not a notable impedi-
ment. Most importantly, the zero false negative rate of our
method ensures that, if the target code is in memory, it will
be found.

Finally, although not specifically targeted at malware de-
tection, codeid can be reliably used for ad-hoc malware sig-
nature generation and in-memory scans. This is useful for
newly discovered samples (during incident response) before
a more succinct signature is derived and incorporated into
the security monitoring infrastructure.

6.
1]

REFERENCES

W. L. Bryan D. Payne Martim D. P. de A. Carbone.
Secure and flexible monitoring of virtual machines. In
Proceedings of the Annual Computer Security
Applications Conference, 2007.

M. Christodorescu, R. Sailer, D. L. Schales,

D. Sgandurra, and D. Zamboni. Cloud security is not
(just) virtualization security: A short paper. In
Proceedings of the 2009 ACM Workshop on Cloud
Computing Security, CCSW ’09, pages 97-102, New
York, NY, USA, 2009. ACM.

Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin.
OS-Sommelier: Memory-only operating system
fingerprinting in the cloud. In Proceedings of the Third
ACM Symposium on Cloud Computing, SoCC ’12,
pages 5:1-5:13, New York, NY, USA, 2012. ACM.
imageinfo. https://code.google.com/p/volatility/
wiki/CommandReference#imageinfo.

N. L. P. Jr., A. Walters, T. Fraser, and W. A.
Arbaugh. Fatkit: A framework for the extraction and
analysis of digital forensic data from volatile system
memory. Digital Investigation, 3(4):197-210, 2006.
libguestfs. http://libguestfs.org/.

libvmi. http://code.google.com/p/vmitools/.

Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang.
Siggraph: Brute force scanning of kernel data
structure instances using graph-based signatures. In
NDSS, 2011.

[9]

(10]
(11]

(12]
(13]

(14]

(15]

[16]
(17]

(18]
(19]
20]

R. Love. Linuz Kernel Development. Addison-Wesley
Professional, third edition, 2010.

nmap. http://nmap.org/.

B. D. Payne. Simplifying virtual machine
introspection using libvmi, 2012. Sandia Report
SAND2012-7818, http://prod.sandia.gov/techlib/
access-control.cgi/2012/127818.pdf|

gemu. http://qemu.org.

N. A. Quynh. Operating system fingerprinting for
virtual machines. In DEFCON 18, 2010.
http://www.defcon.org/images/defcon-18/
dc-18-presentations/Quynh/
DEFCON-18-Quynh-0S-Fingerprinting-VM.pdf.

V. Roussev. Data fingerprinting with similarity
digests. In Advances in Digital Forensics VI, pages
207-226. Springer, 2010.

M. E. Russinovich, D. A. Solomon, and A. Ionescu.
Windows Internals: Including Windows Server 2008
and Windows Vista. Microsoft Press, fifth edition,
2009.

sdhash. http://sdhash.org,.

virt-inspector.
http://libguestfs.org/virt-inspector.1.htmll
Volatility. https://code.google.com/p/volatility/.
VX Heaven. http://vxheaven.org,.

Xprobe2. http://sourceforge.net/projects/
xprobe/files/xprobe2/.

https://code.google.com/p/volatility/wiki/CommandReference#imageinfo
https://code.google.com/p/volatility/wiki/CommandReference#imageinfo
http://libguestfs.org/
http://code.google.com/p/vmitools/
http://nmap.org/
http://prod.sandia.gov/techlib/access-control.cgi/2012/127818.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2012/127818.pdf
http://qemu.org
http://www.defcon.org/images/defcon-18/dc-18-presentations/Quynh/DEFCON-18-Quynh-OS-Fingerprinting-VM.pdf
http://www.defcon.org/images/defcon-18/dc-18-presentations/Quynh/DEFCON-18-Quynh-OS-Fingerprinting-VM.pdf
http://www.defcon.org/images/defcon-18/dc-18-presentations/Quynh/DEFCON-18-Quynh-OS-Fingerprinting-VM.pdf
http://sdhash.org
http://libguestfs.org/virt-inspector.1.html
https://code.google.com/p/volatility/
http://vxheaven.org
http://sourceforge.net/projects/xprobe/files/xprobe2/
http://sourceforge.net/projects/xprobe/files/xprobe2/

	Introduction
	Related Work
	Deep analysis techniques
	Other fingerprinting techniques

	Relocation-Based Code Fingerprinting
	Problem statement & requirements
	Overview
	Design Rationale
	Signature Comparison

	Evaluation
	Test Data
	Relocation Prevalence & Code Coverage
	Collisions & Signature Overlap
	Accuracy Analysis
	Page-level accuracy
	File-level accuracy

	Throughput
	Comparison with prior work

	Conclusions
	References

